
Chapter 8

Internal Model Principle and

Repetitive Control

In this chapter, we look at disturbance rejection and reference tracking in which the disturbances
or reference signals have known structure - namely they can be thought of as being generated by an
exo-system or the signal satisfies a known linear differential or difference equation. In this scenario,
the controller can reject these disturbance or track the references by incorporating the model of
the disturbance or the reference signal within itself. This approach is known as internal model
principle first championed by Francis and Wonham (1976).

We shall develop IMP first in the continuous time transfer function mode, and then in the
state-space formulation. Finally, for the disturbance and reference are periodic, a special type of
IMP controller known as repetitive control (see work by Tsao, Tomizuka and co-workers) will be
discussed.

8.1 Disturbance and reference Signal model

If the reference signal, or disturbance d(t) satisfy some differential equation: e.g.

dnd

dtnd

d(t) + γnd−1
dnd−1

dtnd−1
d(t) + . . . γ1

d

dt
d(t) + γ0d(t) = 0

then, taking Laplace transform,
[
snd + γnd−1s

nd−1 + . . . + γ0

]

︸ ︷︷ ︸

Γd(s)

D(s) = f(0, s)

where f(0, s) is a polynomial in s arises because of initial conditions, d(0), ḋ(0), d̈(0) etc.
We call Γd(s) the disturbance generating polynomial.
Example:

• d(t) = sin(ωt): Γd(s) = (s2 + ω2).

• d(t) = d0 a constant: Γd(s) = s

• d(t) = eat: Γd(s) = (s − a).

• d(t) = d0 + d1e
at: Γd(s) = s(s − a).

From the last example, we see that we can form disturbance generating polynomials for d(t) =
α(t) + β(t) by combining (multiplying) the disturbance generating polynomials for α(t) and β(t).
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8.2 Internal Model Principle

The internal model principle says that if the input disturbance, di(t), the output disturbance, do(t),
or a reference r(t) has Γd(s) as the generating polynomial, then using a controller of the form:

C(s) =
P (s)

Γd(s)L̄(s)
(8.1)

in the standard one degree-of-freedom control architecture can asymptotically reject the effect of the
disturbance and cause the output to track the reference.

Note that only the generating polynomial is needed. The magnitude of the disturbances or of
the reference is not needed.

To see why IMP works, let the plant model be

Go(s) =
Bo(s)

Ao(s)
=

bn−1s
n−1 + bn−2s

n−2 + . . . + b0

sn + an−1sn−1 + an−2sn−2 + . . . + a0
.

Assume that Γd(s) is not a factor of Bo(s).
The sensitivity, input sensitivity, and complementary sensitivity functions of the closed loop

system So(s), Sio(s) and To(s) are given by:

So(s) =
Γd(s)L̄(s)Ao(s)

Γd(s)L̄(s)Ao(s) + P (s)Bo(s)

Sio(s) =
Γd(s)L̄(s)Bo(s)

Γd(s)L̄(s)Ao(s) + P (s)Bo(s)

To(s) =
P (s)Bo(s)

Γd(s)L̄(s)Ao(s) + P (s)Bo(s)

Recall the So(s) is the transfer function between an output disturbance and output, Sio(s) is the
transfer function between an input disturbance and output, and To(s) is the transfer function
between the reference input and the output.

Suppose that L̄(s) and P (s) have been chosen such that the closed loop characteristic equation

Acl(s) = Γd(s)L̄(s)Ao(s) + P (s)Bo(s)

has roots that have negative real parts.
The response of the system to the output disturbance d0(t) with generating polynomial Γd(s)

is:

Y (s) = So(s)Do(s) = So(s)
f(0, s)

Γd(s)
=

L̄(s)Ao(s)

Acl(s)
f(0, s)

The last equality is because of the cancellation of Γd(s) term. Since Acl(s) is assumed to have
stable roots, the inverse Laplace transform of Y (s) converges to 0. Thus, y(t → ∞) = 0.

Similarly with input disturbance, di(t),

Y (s) = Sio(s)Di(s) =
L̄(s)Bo(s)

Acl(s)
f(0, s)

so that y(t → ∞) = 0.
Finally for a reference r(t) with Γd(s) as its generating polynomial. Let e(t) = r(t) − y(t).

E(s) = (1 − To(s))
f(0, s)

Γd(s)
= So(s)

f(0, s)

Γd(s)
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so that e(t → ∞) = 0 and y(t) → r(t).
Therefore, 1) in the presence of output or input disturbances (do(t) or di(t)), y(t) → 0; and

2) in the presence of reference signal, y(t) → r(t) whenever do(t), di(t) and r(t) have generating
polynomial Γd(s).

The application of IMP is straightforward. However, we need to design L̄(s) and P (s) in the
controller (8.1) so that the closed loop characteristic equation Acl(s) has stable roots. One way is
by assigning the poles of Acl(s).

8.3 Pole placement Problem

8.3.1 General case

Plant: Strcitly proper and of order n

Go(s) =
Bo(s)

Ao(s)

Bo(s) = bn−1s
n−1 + bn−2s

n−2 + . . . + b1s + b0

Ao(s) = sn + an−1s
n−1 + . . . + a1s + a0

Controller: Proper and of degree (i.e. order) nl

C(s) =
P (s)

L(s)

P (s) = pnl
snl + pnl−1s

n−1 + . . . + p1s + p0

L(s) = snl + lnl−1s
n−1 + . . . + l1s + l0

We assume that L(s) and Ao(s) are monic (i.e. the leading coefficients are 1).
The closed loop characteristic polynomial is of degree ncl = n + nl

Acl(s) = Ao(s)L(s) + Bo(s)P (s)

= sn+nl + γn+nl−1s
n+nl−1 + . . . + γ0

Question: Under what circumstance can we use C(s) to assign the roots of Acl(s) (i.e. the
poles of the closed loop system) ?

Theorem 8.3.1 (Pole placement) If Ao(s) and Bo(s) have no common factors (co-prime), then
using a controller of order nl = n − 1 can be used to assign the nc = nl + n-th order closed loop
characteristic polynomial Acl(s) arbitrarily.

Thus, in order for roots of Acl(s) to be arbitrarily assignable, we need at least ncl = 2n − 1.

Proof: Idea: Count the number of parameters

• The number of free coefficients in L(s) and P (s) available is: nl + nl + 1 = 2nl + 1.

• The number of equations that need to be solved equals number of assignable coefficients in
Acl(s). Since leading coefficient in Acl(s) is always 1, there are ncl = nl + n coefficients to
assign.
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• For problem to be solvable, number of free parameters ≥ number of equations

2nl + 1 ≥ nl + n ⇒ nl ≥ n − 1

or ncl = n + nl ≥ 2n − 1.

• Notice that coefficients in L(s) and P (s) enter into coefficient is Acl(s) linearly. In the case
nl = n − 1, then matrix that relate the coefficients of L(s) and P (s) to the coefficients of
Acl(s) is related to the Sylvester matrix (see Goodwin 7.2) which is non-singular when Ao(s)
and Bo(s) are co-prime.

⋄

Typically, if nl is greater than what is stated in the Theorem, Acl(s) is still assignable, but the
solution is not unique.

Example: Go(s) = 1/s and C(s) = p1s+p0

s+l0
.

Acl(s) = s2 + (p1 + l0)s + p0

The roots of Acl(s) can be assigned arbitrarily, but L(s) and P (s) are not unique.

8.3.2 Pole Assignment for IMP

For solving the IMP problem, C(s) has an additional constraint:

C(s) =
P (s)

Γd(s)L̄(s)

where the disturbance generating polynomial Γd(s) is monic and of order nd.
To make sure that the controller is implementable, C(s) must be proper, we ensure that the

degree (or order) of P (s) is at most the degree of L̄(s)Γd(s).

L̄(s) = snl + lnl−1s
n−1 + . . . + l1s + l0

P (s) = pnl+nd
snl+nd + pnl+d−1s

nl+nd−1 + . . . + p1s + p0.

Note: nl here denotes the degree of L̄(s). The total degree of the controller is nl + nd.
The closed loop characteristic polynomial Acl(s) will be of order ncl = nl + nd + n:

Acl(s) = Ao(s)L̄(s)Γd(s) + Bo(s)P (s)

Question: When is the roots of Acl(s) arbitrarily assignable with the IMP constraint?

Theorem 8.3.2 (Pole placement for IMP) Let Γd(s) be a nd degree disturbance generating
polynomial. Assume that Ao(s) and Bo(s), nor Γd(s) and Bo(s) has common factors and Ao(s) is
of degree n. Then, using an IMP controller of the form:

C(s) =
P (s)

L̄(s)Γd(s)

where L̄(s) is of the order nl = n − 1, P (s) is of degree nl + nd can be used to assign the ncl =
nl + nd + n = 2n + nd − 1-th order closed loop characteristics polynomial Acl(s) arbitrarily.

Thus, in order for roots of Acl(s) to be arbitrarily assignable, ncl = 2n + nd − 1.
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Proof: Idea:

• Number of free parameters is nl + nd + 1 (from P (s)) plus nl (from L̄(s)), i.e. 2nl + nd + 1
in total.

• Number of coefficients in Acl(s) is nl + nd + n.

• So, we need 2nl + nd + 1 ≥ nl + nd + n. This gives the condition, nl ≥ n − 1.

• Total degree of Acl(s) is nc = nl +n+nd, so it must be at least nc ≥ 2n+nd−1. In particular,
ncl = 2n + nd − 1 will work.

⋄
Typically, if nl is greater than what is stated in the Theorems, the solution is not unique.

8.4 Internal model principle in states space

We develop IMP based control concepts in the states space formulation. There are two methods:

• disturbance estimate feedback

• output filtering

8.4.1 Disturbance Exo-system:

Suppose that disturbance d(t) is unknown, but we know that it satisfies some differential equation.
This implies that d(t) is generated by an exo-system:

ẋd = Adxd

d = Cdxd

Since,

D(s) = Cd(sI − Ad)
−1xd(0) = Cd

Adj(sI − Ad)

det(sI − Ad)
xd(0) =

f(0, s)

Γd(s)

where xd(0) is the initial value of xd(t = 0) and the disturbance generating polynomial is nothing
but the characteristic polynomial of Ad,

Γd(s) = det(sI − Ad)

For example, if d(t) = d0 + αsin(ωt + φ),





ẋd1

ẋd2

ẋd3



 =





0 1 0
−ω2 0 0

0 0 0









xd1

xd2

xd3





d = xd1 + xd3

The characteristic polynomial, as expected, is:

Γd(s) = det(sI − Ad) = s(s2 + ω2)
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8.4.2 Method 1: Disturbance-estimate feedback

Suppose that disturbance enters a state space system:

ẋ = Ax + B(u + d)

y = Cx

If we knew d(t) then an obvious control is:

u = −d + v − Kx

where K is the state feedback gain. However, d(t) is generally unknown. Thus, we estimate it using
an observer. First, augment the plant model.

(
ẋ
ẋd

)

=

(
A BCd

0 Ad

)(
x
xd

)

+

(
B
0

)

u

y =
(
C 0

)
(

x
xd

)

Notice that the augmented system is not controllable from u. Nevertheless, if d has effect on y, it
is observable from y.

Thus, we can design an observer for the augmented system, and use the observer state for
feedback:

d

dt

(
x̂
x̂d

)

=

(
A BCd

0 Ad

)(
x̂
x̂d

)

+

(
B
0

)

u +

(
L1

L2

)

(y − Cx̂)

u = −Cdx̂d
︸ ︷︷ ︸

d̂

+v − Kx̂ = v −
(
K Cd

)
(

x̂
x̂d

)

where L = [LT
1 , LT

2 ]T is the observer gain. The controller can be simplified to be:

d

dt

(
x̂
x̂d

)

=

(
A − BK − L1C 0

−L2C Ad

)(
x̂
x̂d

)

−

(
−B L1

0 L2

)(
v
y

)

u = −
(
K Cd

)
(

x̂
x̂d

)

+ v

The y(t) → u(t) controller transfer function Cyu(s) has eigenvalues of A − BK − L1C and of
Ad as poles.

To see this, notice that the transfer function of the controller from y → u is: Cyu(s) =

(
K Cd

)
(

sI − A + BK + LC 0
L2C sI − Ad

)
−1(

L1

L2

)

And the determinant of the block lower triangular matrix is:

det(sI − A + BK + LC)det(sI − Ad)

=det(sI − A + BK + LC)Γd(s)

Hence, the controller Cyu(s) has Γd(s) in its denominator.
This is exactly the Internal Model Principle.
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8.4.3 Method 2: Augmenting plant dynamics by filtering the output

In this case, the goal is to introduce the disturbance generating polynomial into the controller
dynamics by filtering the output y(t).

Let ẋd = Adxd, d = Cdxd be the disturbance exo-system.
Nominal plant

ẋ = Ax + Bu + Bd

y = Cx

Output filter:

ẋa = Adxa + CT
d · y

Stabilize the augmented system using (observer) state feedback:

u = −[Ko Ka]

(
x̂
xa

)

where x̂ is the observer estimate of the original plant itself.

˙̂x = Ax̂ + Bu + L(y − Cx̂).

Notice that xa need not be estimated since it is generated by the controller itself!
The transfer function of the controller is: C(s) =

(
Ko Ka

)
(

sI − A + BK + LC BK
0 sI − Ad

)
−1(

L
CT

d

)

from which it is clear that its denominator has Γd(s) = det(sI−Ad) in it. i.e. the Internal Model
Principle.

The following is an intuitive way of understanding how the output filtering approach works.
For concreteness, assume that the disturbance d(t) is a sinusoid with frequency ω.

• Suppose that the closed loop system is stable. This means that for any bounded input, any
internal signals will also be bounded.

• For the sake of contradiction, if some residual sinusoidal response in y(t) still remains, then
Y (s) is of the form:

Y (s) =
α(s, 0)

s2 + ω2

• The augmented state is the filtered version of Y (s),

Xa(s) =
β(s, 0)

(s2 + ω)2

for some polynomial β(0, s). The time response of xa(t) is of the form

xa(t) = γsin(ωt + φ1) + δ · t · sin(ωt + φ2).

The second term will be unbounded.
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• In general, for other types of disturbances, system output y(t) will have the same mode as
specified by Γd(s). By filtering the output by a filter with Γd(s) in its denominator, one would
always have Γd(s)

2 in the denominator. This leads to “t” term. Since the Laplace transform
relationship is:

L(f(t)) = F (s) ⇒ L(tf(t)) = −
d

ds
F (s)

For example,
1

(s + a)2
= −

d

ds

(
1

s + a

)

⇒ L−1

(
1

(s + a)2

)

= te−at

For the sinusoidal case, a = jω. In this case, |te−at| → ∞.

• Since d(t) is a bounded sinusoidal signal, xa(t) must also be bounded. This must mean that
y(t) does not contain sinusoidal components with frequency ω.

The most usual case concerns combating constant disturbances using integral control. In this
case, the augmented state is:

xa(t) =

∫ t

0
y(τ)dτ.

It is clear that if the output converges to some steady value, y(t) → y∞, y∞ must be 0. Or otherwise
xa(t) will be unbounded.

8.5 State space formulation of discrete time repetitive control

The goal of repetitive control is to eliminate the effect of periodic disturbance or to track a periodic
reference input. The mentality if that of learning the disturbance or the required control signal
that cancels it. In implementation, it is basically an IMP controller.

Consider periodic discrete time disturbance, d(k − N) = d(k) where N is the period. We can
formulate a disturbance generating exo-system:










xd1

xd2

xd3
...

xdN










(k + 1) =










0 1 0 0 . . .
0 0 1 0 . . .
...

...
...

... 0
0 . . . 0 . . . 1
1 0 . . . 0 0



















xd1

xd2

xd3
...

xdN










(k)

d(k) = xd1(k).

This can be written as

xd(k + 1) = Adxd(k)

d(k) = Cdxd(k)

If the plant to be controlled is:

e(k + 1) = Ae(k) + B(u(k) + d(k))

y(k) = Ce(k)

We proceed just like the disturbance-estimate feedback approach to IMP. A control strategy would
be:

u(k) = −Ke(k) − d̂(k)
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where d̂(k) is the estimate of d(k) obtained using an observer:

(
ê
x̂d

)

(k + 1) =

(
A BCd

0 Ad

)

︸ ︷︷ ︸

Acom

(
x̂
x̂d

)

(k + 1) +

(
B
0

)

u(k)

− L(Cê(k) − y(k))

d̂(k) = Cdx̂d(k)

where L is the observer gain chosen such that all the eigenvalues of Acom−LC have absolute values
less than 1. i.e. the eigenvalues should lie within the unit disk centered at the origin. This is the
stability criterion for discrete time systems.

A difficulty in this approach is that N , the dimension of xd(k) is typically very large. The
dimension, N is the ratio of period of the periodic disturbance to the sampling time. This makes
designing a stable observer difficult.

8.6 Polynomial Approach to Discrete Time Repetitive Control

Here we consider a polynomial (transfer function) approach to solving the repetitive control prob-
lem. The approach is to utilize the Internal Model Principle and design a discrete time controller
that contains the generating polynomial for the discrete time disturbance in the denominator.

First we discuss the transfer function representation for discrete time system. ...

8.6.1 Discrete Time Transfer Functions

Let u(k) be a discrete time sequence, i.e. the sequence u(0), u(1), u(2), . . ..
The shift or the delay operator is denoted by q−1. y(k) = q−1[u(k)] denotes the 1 step delay

version of the sequence u(k), i.e. y(k) = u(k − 1) for any k ≥ 0.
A discrete time system can be described by a difference equation:

y(k) + a1y(k − 1) + a2y(k − 2) + . . . any(k − n)

=b0u(k − δ) + b1u(k − δ − 1) + . . . bmu(k − δ − m),

so that the response at time index k, y(k) is a function of previous output as well as present (if the
relative degree (or delay) δ = 0) and past inputs.

Using the shift operator notation, the system can be written as:

(
1 + a1q

−1 + a2q
−2 + . . . anq−n

)
[y(k)]

=q−δ
(
b0 + b1q

−1 + . . . + bmq−m
)
[u(k)]

We can define the transfer function

Go(q
−1) =

Bo(q
−1)

Ao(q−1)

=
q−δ

(
b0 + b1q

−1 + . . . + bmq−m
)

(1 + a1q−1 + a2q−2 + . . . anq−n)

to represent the difference equation. Sometimes, the delay (or relative degree term) q−δ is factored
out of Bo(q

−1) to make the structure more clear.
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Stability of discrete time transfer function

If we factor Ao(q
−1) into

Ao(q
−1) = (1 − α1q

−1)(1 − α2q
−1) . . . (1 − αnq−1)

then q = αi are the roots of the Ao(q
−1). Notice that αi can be in complex conjugate pairs. Then,

we say that Ao(q
−1) is stable if all |αi| < 1.

To see why stability is related to the roots of Ao(q
−1) this way, consider the zero input response,

e(k), of the system (i.e. no input):

Ao(q
−1)[e(k)] = 0

If input is considered, then the RHS will have present and past inputs u(k), u(k − 1) etc. in it.

Now factor Ao(q
−1) into:

Ao(q
−1)[e(k)] =

(
(1 − α1q

−1)Πn
i=2(1 − αiq

−1)
)
[e(k)] = 0

Let

g1(k) := Πn
i=2(1 − αiq

−1)[e(k)]

Then,

(1 − α1q
−1)[g1(k)] = 0 ⇒ g1(k + 1) = α1g1(k).

Now for m = 2, . . . , n − 1.

gm(k) := Πn
i=m+1(1 − αiq

−1)[e(k)]

so that (1 − αmq−1)[gm(k)] = gm−1(k), i.e.

gm(k + 1) = αmgm(k) + gm−1(k + 1)

Thus, e(k) = gn(k). We can rewrite this in state-space form:










g1

g2

g3
...

gn










(k + 1) =










α1 0 0 . . .
α1 α2 0 0 . . .
α1 α2 α3 0 . . .
...

...
... 0

α1 α2 . . . αn−1 αn



















g1

g2

g3
...

gn










(k).

So that









g1

g2

g3
...

gn










(k + 1) =










α1 0 0 . . .
α1 α2 0 0 . . .
α1 α2 α3 0 . . .
...

...
... 0

α1 α2 . . . αn−1 αn










k








g1

g2

g3
...

gn










(0).

Notice that the eigen values of this system are αi, i = 1, . . . , n. So that if |αi| < 1 for all i, we have
gi(k) → 0 as k → 0.

Hence |αi|, i = 1, . . . , n, the magnitude of the roots of Ao(q
−1) = Πn

i=1(1 − αiq
−1), determine

the stability of the transfer function.
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8.7 Discrete time Periodic Disturbance and IMP

If a discrete time disturbance d(k) satisfies:

d(k) + γ1d(k − 1) + . . . + γNd(k − N) = 0

we have (1 + γ1q
−1 + . . . + γNq−N )[d(k)] = 0. We call

Γd(q
−1) := (1 + γ1q

−1 + . . . + γNq−N )

the disturbance generating polynomial for d(k).
In the case of a N−periodic disturbance, we have d(k − N) = d(k). So, d(k) satisfies:

q−N [d(k)] = d(k), ⇒ (1 − q−N )[d(k)] = 0.

The periodic disturbance generating polynomial is therefore:

Γd(q
−1) = 1 − q−N .

IMP in the discrete time domain works the same way as in the continuous time. Specifically, if
the controller is of the form

C(q−1) =
P (q−1)

Γd(q−1)L̄(q−1)

The closed loop characteristic polynomial is

Acl(q
−1) = Γd(q

−1)L̄(q−1)Ao(q
−1) + P (q−1)Bo(q

−1).

Then, the sensitivities are:

So(q
−1) =

Γd(q
−1)L̄(q−1)Ao(q

−1)

Acl(q−1)

Sio(q
−1) =

Γd(q
−1)L̄(q−1)Bo(q

−1)

Acl(q−1)

To(q
−1) =

P (q−1)Bo(q
−1)

Acl(q−1)

In the case of output disturbance, the response is

y(k) = So(q
−1)d(k).

Acl(q
−1)[y(k)] = L̄(q−1)Ao(q

−1)Γd(q
−1)d(k)

= (L̄(q−1)Ao(q
−1))[Γd(q

−1)[d(k)]] = 0.

If Acl(q
−1) is designed so that it is stable, y(k) → 0 as k → ∞.

Similarly for input disturbance, y(k) = Sio(q
−1)di(k)

Acl(q
−1)[y(k)] = L̄(q−1)Bo(q

−1)[Γd(q
−1)d(k)] = 0.

Hence, y(k) → 0.
In the presence of a reference r(k),

y(k) = To(q
−1)[r(k)] = r(k) − So(q

−1)[r(k)].

Since So(q
−1)[r(k)] → 0, we have y(k) → r(k).
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8.8 Prototype Repetitive Controller

Since the disturbance generating polynomial is of very high order, it is difficult to assign the poles
of the closed loop system. The prototype repetitive controller which is of very simple structure is
therefore proposed.

For simplicity, we assume that Ao(q
−1) and Bo(q

−1) in Go(q
−1) have roots within the unit disk

(stable and minimum phase).

C(q−1) =
krG

−1
o (q−1)q−N

1 − q−N
= kr

Ao(q
−1)qδ−N

Bo(q−1)(1 − q−N )

Notice that C(q−1) consists of

• inverting the plant Go(q
−1),

• incorporating 1 − q−N in the denominator (IMP), and

• in delaying the control by one cycle q−N .

Since N is typically much larger than the excess degree of Go(q
−1), C(q−1) will be proper.

With periodic (output) disturbance (input disturbance / reference cases are similar), we have:

Acl(q
−1)[e(k)] = (1 − q−N )d(k) = 0

⇒0 =
(
(1 − q−N ) + krq

−N
)
[e(k)]

⇒0 = (1 − (1 − kr)q
−N )[e(k)]

⇒e(k) = (1 − kr)e(k − N).

Let λ := (1 − kr). If 0 < kr < 2, then |λ| < 1. For any k ≥ 0, we can write k = n + iN where
0 ≤ n ≤ N − 1, and i ≥ 0 is an integer. We then have

e(k) = e(n + iN) = λie(n) → 0.

Remarks:

• In the case when Ao(q
−1) has unstable roots, the system can be stabilized first. If Bo(q

−1)
has unstable factors, these should not be cancelled (else internal instability). The repetitive
controller needs to be modified by doing a zero phase compensation and by modification of
the gain. See (Tomizuka, Tsao, Chew 1989) paper for details.

• Having exactly 1 − q−N as the generating polynomial may present some robustness prob-
lems, since this implies the controller has very high gain at all harmonics of the disturbance
frequency. One idea is to limit the bandwidth by modifying 1 − q−N to

1 − Q(q, q−1)q−N

where Q(q, q−1) is a unity gain zero phase filter (known as Q-filter). For example,

Q(q, q−1) = 0.1q2 + 0.15q + 0.5 + 0.15q−1 + 0.1q−2

This smoothes out the generating polynomial and has the effect of reducing the gain at high
order harmonics.

• Normally, if 1−q−N the sensitivity function So(q
−1) will have 1−q−N in its denominator. The

sensitivity becomes vanish at q = ejΩTs , for Ω are harmonics of the fundamental: ωfund = 2π
NTs

where Ts is the sampling period. Using the Q-filter, if Q(q, q−1) is low pass, the sensitivity
is small only at the 1st few harmonics. High frequency harmonics are ignored to preserve
robustness.
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8.9 Repetitive Control and IMP Example

Consider a plant given by:

ẋ = u

e = x + d(t)

d(t) = d(t − 2) is a periodic disturbance of period 2 given by:

d(t) = 0.5 ∗ sin(ωt) + 0.3cos(2ωt) + d1(t)

where ω = 2π/2 is the fundamental frequency, d1(t − 2) is a random, piecewise constant (with
sampling period Ts = 0.02s) periodic disturbance between ±0.1.

We develop 3 controllers:

• IMP based continuous time controller that compensates for the fundamental and harmonics.

• A discrete time repetitive controller based on disturbance estimate cancellation using an
observer.

• A Prototype Repetitive Controller.

The latter two will be based on discrete time formulation with sampling time of Ts = 0.02s.

Continuous time IMC

The continuous time IMC Controller that takes care of the fundamental and 1st harmonics:

C(s) =
p4s

4 + p3s
3 + p2s

2 + p1s + p0

(s2 + ω2)(s2 + 4ω2)

Coefficients are chosen such that closed loop poles are at −1.
To develop the repetitive controller, we discretize the system using sampling period of Ts = 0.02.

Discrete time Repetitive Control

The time discretized system is:

e(k + 1) = e(k) + Ts(u(k) + d̄(k))

where d̄(k) = 1
Ts

[d(k + 1) − d(k)]. We assume that d̄(k) is generated by a disturbance generating

exo-system, xd(k + 1) = Adxd(k), d̄(k) = Cdxd(k).
We consider the repetitive control law using the disturbance cancellation method:

u(k) = − ˆ̄d(k) − 0.1e(k).

The disturbance observer is designed to be:
(

ê
x̂d

)

(k + 1) =

(
1 TsCd

0 Ad

)(
ê
x̂d

)

(k) +

(
Ts

0

)

u(k)

−L(ê − e)

where L is chosen using the LQ design method via Matlab.
>> [K, S, E] = lqr(A’, C’, Q, R);

>> L = K’;

where Q is a positive definite matrix (e.g. identity) with dimension of (e, xT
d ), and R (small

scalar) is of the dimension of e. This ensures that A − LC is stable.
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Prototype Repetitive Controller

To design the prototype repetitive control law, the transfer function of the plant is:

Go(q
−1) =

Tsq
−1

1 − q−1

i.e. B(q−1) = Ts, δ = 1, and Ao(q
−1) = 1 − q−1. Therefore, prototype repetitive control law is:

C(q−1) =
kr

Ts

q−(N−1)(1 − q−1)

1 − q−N
=

kr

Ts

q−(N−1) − q−(N−2)

1 − q−N

The control action is given by:

(1 − q−N )[u(k)] =
kr

Ts
(q−(N−1) − q−(N−2))[−e(k)]

Hence,

u(k) = u(k − N) −
kr

Ts
(e(k + 1 − N) − e(k + 2 − N)).

Notice that the control action is based on modifying the previous control input by the error in the
previous cycle. Hence, the control is being learned.
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The SIMULINK diagram is shown below:
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The error shown is below.
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2 4 6 8 10 12 14 16 18 20

−3

−2

−1

0

1

2

Time offset: 0               

Error using IMC, state-space type repetitive control and prototype repetitive control

Notice that both repetitive controllers are able to make the error to completely vanish, whereas
the random part of the error passes straight through the IMC unattenuated. With kr = 1 in the
prototype repetitive control, the control action is learned in 1 cycle. Thus, the error converges
pretty much after the 1st cycle.
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7 8 9 10 11 12 13 14 15 16
−10

−5

0

5

10
Control Signal − IMC

7 8 9 10 11 12 13 14 15 16
−50

0

50
Control Signal − StateSpace Repetitive

7 8 9 10 11 12 13 14 15 16
−50

0

50
Control Signal − Prototype Repetitive

Time − s

Control action using IMC, state-space type repetitive control and prototype repetitive control
are shown above.

Notice from the control actions that all three cases learn a periodic control action, with the IMC
mainly having the fundamental and harmonics. The learned control action by both the repetitive
controllers are similar.


